A Nanodevice Origami for Molecular Crowding
Abstract
Structural DNA nanotechnology offers the capacity to construct ultraminiaturized devices with programmed nanoscale geometry, mechanical and dynamic properties, and site-specific molecular functionalities. These features and the possibility to position and orient molecules in user-defined ways may be exploited to create custom instruments for precision measurements of molecular-scale structure, dynamics, and interactions. Such devices may help constrain molecular motion along interesting reaction coordinates and may also exert forces to probe the mechanical properties or dynamics of molecules under study. Multiple ways of reading out device states may be used, including atomic force microscopy or transmission electron microscopy imaging, single-molecule or bulk fluorescence, or ionic conductivity as in nanopore systems. Early successes with custom scientific instruments based on DNA origami underline the tremendous potential to enable new approaches to making scientific discoveries in biological and synthetic materials systems.
References
Gothelf, K.V. , MRS Bull. 42 (12), 897 (2017).CrossRef
Derr, N.D. , Goodman, B.S. , Jungmann, R. , Leschziner, A.E. , Shih, W.M. , Reck-Peterson, S.L. , Science 338 (6107), 662 (2012).CrossRef
Hariadi, R.F. , Appukutty, A.J. , Sivaramakrishnan, S. , ACS Nano 10 (9), 8281 (2016).CrossRef
Hariadi, R.F. , Sommese, R.F. , Sivaramakrishnan, S. , Elife 4, e05472 (2015).CrossRef
Angelin, A. , Weigel, S. , Garrecht, R. , Meyer, R. , Bauer, J. , Kumar, R.K. , Hirtz, M. , Niemeyer, C.M. , Angew. Chem. Int. Ed. Engl. 54 (52), 15813 (2015).CrossRef
Pedersen, R.O. , Loboa, E.G. , LaBean, T.H. , Biomacromolecules 14 (12), 4157 (2013).CrossRef
Shaw, A. , Lundin, V. , Petrova, E. , Fordos, F. , Benson, E. , Al-Amin, A. , Herland, A. , Blokzijl, A. , Högberg, B. , Teixeira, A.I. , Nat. Methods 11 (8), 841 (2014).CrossRef
Stein, I.H. , Steinhauer, C. , Tinnefeld, P. , J. Am. Chem. Soc. 133 (12), 4193 (2011).CrossRef
Vogele, K. , List, J. , Pardatscher, G. , Holland, N.B. , Simmel, F.C. , Pirzer, T. , ACS Nano 10 (12), 11377 (2016).CrossRef
Acuna, G.P. , Moller, F.M. , Holzmeister, P. , Beater, S. , Lalkens, B. , Tinnefeld, P. , Science 338 (6106), 506 (2012).CrossRef
Pan, K. , Boulais, E. , Yang, L. , Bathe, M. , Nucleic Acids Res. 42 (4), 2159 (2014).CrossRef
Bell, N.A. , Engst, C.R. , Ablay, M. , Divitini, G. , Ducati, C. , Liedl, T. , Keyser, U.F. , Nano Lett. 12 (1), 512 (2012).CrossRef
Wei, R. , Martin, T.G. , Rant, U. , Dietz, H. , Angew. Chem. Int. Ed. Engl. 51 (20), 4864 (2012).CrossRef
Langecker, M. , Arnaut, V. , Martin, T.G. , List, J. , Renner, S. , Mayer, M. , Dietz, H. , Simmel, F.C. , Science 338 (6109), 932 (2012).CrossRef
Krishnan, S. , Ziegler, D. , Arnaut, V. , Martin, T.G. , Kapsner, K. , Henneberg, K. , Bausch, A.R. , Dietz, H. , Simmel, F.C. , Nat. Commun. 7, 12787 (2016).CrossRef
Gopfrich, K. , Li, C.Y. , Ricci, M. , Bhamidimarri, S.P. , Yoo, J. , Gyenes, B. , Ohmann, A. , Winterhalter, M. , Aksimentiev, A. , Keyser, U.F. , ACS Nano 10 (9), 8207 (2016).CrossRef
Shrestha, P. , Jonchhe, S. , Emura, T. , Hidaka, K. , Endo, M. , Sugiyama, H. , Mao, H. , Nat. Nanotechnol. 12 (6), 582 (2017).CrossRef
Liedl, T. , Högberg, B. , Tytell, J. , Ingber, D.E. , Shih, W.M. , Nat. Nanotechnol. 5, 520 (2010), doi:10.1038/nnano.2010.107.CrossRef
Kuzuya, A. , Sakai, Y. , Yamazaki, T. , Xu, Y. , Komiyama, M. , Nat. Commun. 2, 449 (2011).CrossRef
Funke, J.J. , Ketterer, P. , Lieleg, C. , Schunter, S. , Korber, P. , Dietz, H. , Sci. Adv. 2 (11), e1600974 (2016).CrossRef
Le, J.V. , Luo, Y. , Darcy, M.A. , Lucas, C.R. , Goodwin, M.F. , Poirier, M.G. , Castro, C.E. , ACS Nano 10 (7), 7073 (2016).CrossRef
Funke, J.J. , Ketterer, P. , Lieleg, C. , Korber, P. , Dietz, H. , Nano Lett. 16 (12), 7891 (2016).CrossRef
Kilchherr, F. , Wachauf, C. , Pelz, B. , Rief, M. , Zacharias, M. , Dietz, H. , Science 353 (6304), aaf5508 (2016).CrossRef
Hudoba, M.W. , Luo, Y. , Zacharias, A. , Poirier, M.G. , Castro, C.E. , ACS Nano 11 (7), 6566 (2017).CrossRef
Nickels, P.C. , Wunsch, B. , Holzmeister, P. , Bae, W. , Kneer, L.M. , Grohmann, D. , Tinnefeld, P. , Liedl, T. , Science 354 (6310), 305 (2016).CrossRef
Iwaki, M. , Wickham, S.F. , Ikezaki, K. , Yanagida, T. , Shih, W.M. , Nat. Commun. 7, 13715 (2016).CrossRef
Martin, T.G. , Bharat, T.A. , Joerger, A.C. , Bai, X.C. , Praetorius, F. , Fersht, A.R. , Dietz, H. , Scheres, S.H. , Proc. Natl. Acad. Sci. U.S.A. 113 (47), E7456 (2016).CrossRef
Suzuki, Y. , Endo, M. , Katsuda, Y. , Ou, K. , Hidaka, K. , Sugiyama, H. , J. Am. Chem. Soc. 136 (1), 211 (2014).CrossRef
Sannohe, Y. , Endo, M. , Katsuda, Y. , Hidaka, K. , Sugiyama, H. , J. Am. Chem. Soc. 132 (46), 16311 (2010).CrossRef
Jungmann, R. , Avendano, M.S. , Dai, M. , Woehrstein, J.B. , Agasti, S.S. , Feiger, Z. , Rodal, A. , Yin, P. , Nat. Methods 13 (5), 439 (2016).CrossRef
Dai, M. , Jungmann, R. , Yin, P. , Nat. Nanotechnol. 11 (9), 798 (2016).CrossRef
Reuss, M. , Fördős, F. , Blom, H. , Öktem, O. , Högberg, B. , Brismar, H. , New J. Phys. 19, 025013 (2017).CrossRef
Schmied, J.J. , Raab, M. , Forthmann, C. , Pibiri, E. , Wunsch, B. , Dammeyer, T. , Tinnefeld, P. , Nat. Protoc. 9 (6), 1367 (2014).CrossRef
Pfitzner, E. , Wachauf, C. , Kilchherr, F. , Pelz, B. , Shih, W.M. , Rief, M. , Dietz, H. , Angew. Chem. Int. Ed. Engl. 52 (30), 7766 (2013).CrossRef
Maune, H.T. , Han, S.P. , Barish, R.D. , Bockrath, M. , Goddard, W.A. III , Rothemund, P.W. , Winfree, E. , Nat. Nanotechnol. 5 (1), 61 (2010).CrossRef
Yang, Y. , Wang, J. , Shigematsu, H. , Xu, W. , Shih, W.M. , Rothman, J.E. , Lin, C. , Nat. Chem. 8 (5), 476 (2016).CrossRef
Gopinath, A. , Miyazono, E. , Faraon, A. , Rothemund, P.W. , Nature 535 (7612), 401 (2016).CrossRef
Akbari, E. , Mollica, M.Y. , Lucas, C.R. , Bushman, S.M. , Patton, R.A. , Shahhosseini, M. , Song, J.W. , Castro, C.E. , Adv. Mater. 1703632 (2017), https://doi.org/10.1002/adma.201703632.CrossRef
Modi, S. , Swetha, M.G. , Goswami, D. , Gupta, G.D. , Mayor, S. , Krishnan, Y. , Nat. Nanotechnol. 4 (5), 325 (2009).CrossRef
Saha, S. , Prakash, V. , Halder, S. , Chakraborty, K. , Krishnan, Y. , Nat. Nanotechnol. 10 (7), 645 (2015).CrossRef
Chopra, A. , Krishnan, S. , Simmel, F.C. , Nano Lett. 16 (10), 6683 (2016).CrossRef
A Nanodevice Origami for Molecular Crowding
Source: https://www.cambridge.org/core/journals/mrs-bulletin/article/dna-origami-devices-for-molecularscale-precision-measurements/D1AC8CF2F00DD01BD49E0968CA81D9DD
0 Response to "A Nanodevice Origami for Molecular Crowding"
Post a Comment