A Nanodevice Origami for Molecular Crowding

Abstract

Structural DNA nanotechnology offers the capacity to construct ultraminiaturized devices with programmed nanoscale geometry, mechanical and dynamic properties, and site-specific molecular functionalities. These features and the possibility to position and orient molecules in user-defined ways may be exploited to create custom instruments for precision measurements of molecular-scale structure, dynamics, and interactions. Such devices may help constrain molecular motion along interesting reaction coordinates and may also exert forces to probe the mechanical properties or dynamics of molecules under study. Multiple ways of reading out device states may be used, including atomic force microscopy or transmission electron microscopy imaging, single-molecule or bulk fluorescence, or ionic conductivity as in nanopore systems. Early successes with custom scientific instruments based on DNA origami underline the tremendous potential to enable new approaches to making scientific discoveries in biological and synthetic materials systems.

References

Gothelf, K.V. , MRS Bull. 42 (12), 897 (2017).CrossRef

Derr, N.D. , Goodman, B.S. , Jungmann, R. , Leschziner, A.E. , Shih, W.M. , Reck-Peterson, S.L. , Science 338 (6107), 662 (2012).CrossRef

Hariadi, R.F. , Appukutty, A.J. , Sivaramakrishnan, S. , ACS Nano 10 (9), 8281 (2016).CrossRef

Hariadi, R.F. , Sommese, R.F. , Sivaramakrishnan, S. , Elife 4, e05472 (2015).CrossRef

Angelin, A. , Weigel, S. , Garrecht, R. , Meyer, R. , Bauer, J. , Kumar, R.K. , Hirtz, M. , Niemeyer, C.M. , Angew. Chem. Int. Ed. Engl. 54 (52), 15813 (2015).CrossRef

Pedersen, R.O. , Loboa, E.G. , LaBean, T.H. , Biomacromolecules 14 (12), 4157 (2013).CrossRef

Shaw, A. , Lundin, V. , Petrova, E. , Fordos, F. , Benson, E. , Al-Amin, A. , Herland, A. , Blokzijl, A. , Högberg, B. , Teixeira, A.I. , Nat. Methods 11 (8), 841 (2014).CrossRef

Stein, I.H. , Steinhauer, C. , Tinnefeld, P. , J. Am. Chem. Soc. 133 (12), 4193 (2011).CrossRef

Vogele, K. , List, J. , Pardatscher, G. , Holland, N.B. , Simmel, F.C. , Pirzer, T. , ACS Nano 10 (12), 11377 (2016).CrossRef

Acuna, G.P. , Moller, F.M. , Holzmeister, P. , Beater, S. , Lalkens, B. , Tinnefeld, P. , Science 338 (6106), 506 (2012).CrossRef

Pan, K. , Boulais, E. , Yang, L. , Bathe, M. , Nucleic Acids Res. 42 (4), 2159 (2014).CrossRef

Bell, N.A. , Engst, C.R. , Ablay, M. , Divitini, G. , Ducati, C. , Liedl, T. , Keyser, U.F. , Nano Lett. 12 (1), 512 (2012).CrossRef

Wei, R. , Martin, T.G. , Rant, U. , Dietz, H. , Angew. Chem. Int. Ed. Engl. 51 (20), 4864 (2012).CrossRef

Langecker, M. , Arnaut, V. , Martin, T.G. , List, J. , Renner, S. , Mayer, M. , Dietz, H. , Simmel, F.C. , Science 338 (6109), 932 (2012).CrossRef

Krishnan, S. , Ziegler, D. , Arnaut, V. , Martin, T.G. , Kapsner, K. , Henneberg, K. , Bausch, A.R. , Dietz, H. , Simmel, F.C. , Nat. Commun. 7, 12787 (2016).CrossRef

Gopfrich, K. , Li, C.Y. , Ricci, M. , Bhamidimarri, S.P. , Yoo, J. , Gyenes, B. , Ohmann, A. , Winterhalter, M. , Aksimentiev, A. , Keyser, U.F. , ACS Nano 10 (9), 8207 (2016).CrossRef

Shrestha, P. , Jonchhe, S. , Emura, T. , Hidaka, K. , Endo, M. , Sugiyama, H. , Mao, H. , Nat. Nanotechnol. 12 (6), 582 (2017).CrossRef

Liedl, T. , Högberg, B. , Tytell, J. , Ingber, D.E. , Shih, W.M. , Nat. Nanotechnol. 5, 520 (2010), doi:10.1038/nnano.2010.107.CrossRef

Kuzuya, A. , Sakai, Y. , Yamazaki, T. , Xu, Y. , Komiyama, M. , Nat. Commun. 2, 449 (2011).CrossRef

Funke, J.J. , Ketterer, P. , Lieleg, C. , Schunter, S. , Korber, P. , Dietz, H. , Sci. Adv. 2 (11), e1600974 (2016).CrossRef

Le, J.V. , Luo, Y. , Darcy, M.A. , Lucas, C.R. , Goodwin, M.F. , Poirier, M.G. , Castro, C.E. , ACS Nano 10 (7), 7073 (2016).CrossRef

Funke, J.J. , Ketterer, P. , Lieleg, C. , Korber, P. , Dietz, H. , Nano Lett. 16 (12), 7891 (2016).CrossRef

Kilchherr, F. , Wachauf, C. , Pelz, B. , Rief, M. , Zacharias, M. , Dietz, H. , Science 353 (6304), aaf5508 (2016).CrossRef

Hudoba, M.W. , Luo, Y. , Zacharias, A. , Poirier, M.G. , Castro, C.E. , ACS Nano 11 (7), 6566 (2017).CrossRef

Nickels, P.C. , Wunsch, B. , Holzmeister, P. , Bae, W. , Kneer, L.M. , Grohmann, D. , Tinnefeld, P. , Liedl, T. , Science 354 (6310), 305 (2016).CrossRef

Iwaki, M. , Wickham, S.F. , Ikezaki, K. , Yanagida, T. , Shih, W.M. , Nat. Commun. 7, 13715 (2016).CrossRef

Martin, T.G. , Bharat, T.A. , Joerger, A.C. , Bai, X.C. , Praetorius, F. , Fersht, A.R. , Dietz, H. , Scheres, S.H. , Proc. Natl. Acad. Sci. U.S.A. 113 (47), E7456 (2016).CrossRef

Suzuki, Y. , Endo, M. , Katsuda, Y. , Ou, K. , Hidaka, K. , Sugiyama, H. , J. Am. Chem. Soc. 136 (1), 211 (2014).CrossRef

Sannohe, Y. , Endo, M. , Katsuda, Y. , Hidaka, K. , Sugiyama, H. , J. Am. Chem. Soc. 132 (46), 16311 (2010).CrossRef

Jungmann, R. , Avendano, M.S. , Dai, M. , Woehrstein, J.B. , Agasti, S.S. , Feiger, Z. , Rodal, A. , Yin, P. , Nat. Methods 13 (5), 439 (2016).CrossRef

Dai, M. , Jungmann, R. , Yin, P. , Nat. Nanotechnol. 11 (9), 798 (2016).CrossRef

Reuss, M. , Fördős, F. , Blom, H. , Öktem, O. , Högberg, B. , Brismar, H. , New J. Phys. 19, 025013 (2017).CrossRef

Schmied, J.J. , Raab, M. , Forthmann, C. , Pibiri, E. , Wunsch, B. , Dammeyer, T. , Tinnefeld, P. , Nat. Protoc. 9 (6), 1367 (2014).CrossRef

Pfitzner, E. , Wachauf, C. , Kilchherr, F. , Pelz, B. , Shih, W.M. , Rief, M. , Dietz, H. , Angew. Chem. Int. Ed. Engl. 52 (30), 7766 (2013).CrossRef

Maune, H.T. , Han, S.P. , Barish, R.D. , Bockrath, M. , Goddard, W.A. III , Rothemund, P.W. , Winfree, E. , Nat. Nanotechnol. 5 (1), 61 (2010).CrossRef

Yang, Y. , Wang, J. , Shigematsu, H. , Xu, W. , Shih, W.M. , Rothman, J.E. , Lin, C. , Nat. Chem. 8 (5), 476 (2016).CrossRef

Gopinath, A. , Miyazono, E. , Faraon, A. , Rothemund, P.W. , Nature 535 (7612), 401 (2016).CrossRef

Akbari, E. , Mollica, M.Y. , Lucas, C.R. , Bushman, S.M. , Patton, R.A. , Shahhosseini, M. , Song, J.W. , Castro, C.E. , Adv. Mater. 1703632 (2017), https://doi.org/10.1002/adma.201703632.CrossRef

Modi, S. , Swetha, M.G. , Goswami, D. , Gupta, G.D. , Mayor, S. , Krishnan, Y. , Nat. Nanotechnol. 4 (5), 325 (2009).CrossRef

Saha, S. , Prakash, V. , Halder, S. , Chakraborty, K. , Krishnan, Y. , Nat. Nanotechnol. 10 (7), 645 (2015).CrossRef

Chopra, A. , Krishnan, S. , Simmel, F.C. , Nano Lett. 16 (10), 6683 (2016).CrossRef

A Nanodevice Origami for Molecular Crowding

Source: https://www.cambridge.org/core/journals/mrs-bulletin/article/dna-origami-devices-for-molecularscale-precision-measurements/D1AC8CF2F00DD01BD49E0968CA81D9DD

0 Response to "A Nanodevice Origami for Molecular Crowding"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel