020 Design 11.8 2017 Full Options Crack
Abstract
Ultrathin solar cells with thicknesses at least 10 times lower than conventional solar cells could have the unique potential to efficiently convert solar energy into electricity while enabling material savings, shorter deposition times and improved carrier collection in defective absorber materials. Efficient light absorption and hence high power conversion efficiency could be retained in ultrathin absorbers using light-trapping structures that enhance the optical path. Nevertheless, several technical challenges prevent the realization of a practical device. Here we review the state-of-the-art of c-Si, GaAs and Cu(In,Ga)(S,Se)2 ultrathin solar cells and compare their optical performances against theoretical light-trapping models. We then address challenges in the fabrication of ultrathin absorber layers and in nanoscale patterning of light-trapping structures and discuss strategies to ensure efficient charge collection. Finally, we propose practical architectures for ultrathin solar cells that combine photonic and electrical constraints, and identify future research directions and potential applications of ultrathin photovoltaic technologies.
References
- 1.
Renewable power generation by technology in the Sustainable Development Scenario, 2000-2030. IEA https://www.iea.org/data-and-statistics/charts/renewable-power-generation-by-technology-in-the-sustainable-development-scenario-2000-2030 (2020).
- 2.
Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).
Article Google Scholar
- 3.
Kayes, B. M. et al. 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. In Proc. 37th IEEE Photovoltaic Specialists Conference 4–8 (2011).
- 4.
Green, M. A. et al. Solar cell efficiency tables (version 53). Prog. Photovolt. 27, 3–12 (2019).
Article Google Scholar
- 5.
Richter, A., Hermle, M. & Glunz, S. W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 3, 1184–1191 (2013).
Article Google Scholar
- 6.
Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%.Nat. Energy 2, 17032 (2017). High-efficiency heterojunction solar cells with e - /h + selective contacts.
Article Google Scholar
- 7.
Nakamura, M. et al. Cd-Free Cu(In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%. IEEE J. Photovolt. 9, 1863–1867 (2019).
Article Google Scholar
- 8.
Andreani, L. C., Bozzola, A., Kowalczewski, P., Liscidini, M. & Redorici, L. Silicon solar cells: toward the efficiency limits. Adv. Phys. X 4, 1548305 (2019).
Google Scholar
- 9.
Miller, O. D., Yablonovitch, E. & Kurtz, S. R. Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit. IEEE J. Photovolt. 2, 303–311 (2012).
Article Google Scholar
- 10.
Sai, H. et al. Potential of very thin and high-efficiency silicon heterojunction solar cells. Prog. Photovolt. 27, 1061–1070 (2019).
Article Google Scholar
- 11.
Liu, Z. et al. Revisiting thin silicon for photovoltaics: a technoeconomic perspective. Energy Environ. Sci. 13, 12–23 (2020).
Article Google Scholar
- 12.
Bhattacharya, S., Baydoun, I., Lin, M. & John, S. Towards 30% power conversion efficiency in thin-silicon photonic-crystal solar cells. Phys. Rev. Appl. 11, 014005 (2019).
Article Google Scholar
- 13.
Petermann, J. H. et al. 19%-efficient and 43 µm-thick crystalline Si solar cell from layer transfer using porous silicon. Prog. Photovolt. 20, 1–5 (2012). CVD epitaxial growth of c-Si layers ( t = 43 µm) on recrystallized porous silicon and transfer.
Article Google Scholar
- 14.
Haug, F.-J. & Ballif, C. Light management in thin film silicon solar cells. Energy Environ. Sci. 8, 824–837 (2015).
Article Google Scholar
- 15.
Erwin, W. R., Zarick, H. F., Talbert, E. M. & Bardhan, R. Light trapping in mesoporous solar cells with plasmonic nanostructures. Energy Environ. Sci. 9, 1577–1601 (2016).
Article Google Scholar
- 16.
Liu, J., Yao, M. & Shen, L. Third generation photovoltaic cells based on photonic crystals. J. Mater. Chem. C 7, 3121–3145 (2019).
Article Google Scholar
- 17.
Jena, A. K., Kulkarni, A. & Miyasaka, T. Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019).
Article Google Scholar
- 18.
Powalla, M. et al. Thin-film solar cells exceeding 22 % solar cell efficiency: an overview on CdTe-, Cu(In, Ga)Se2-, and perovskite-based materials. Appl. Phys. Rev. 5, 041602 (2018).
Article Google Scholar
- 19.
Liu, X. et al. The current status and future prospects of kesterite solar cells: a brief review. Prog. Photovolt. 24, 879–898 (2016).
Article Google Scholar
- 20.
Wang, A., Zhao, J., Wenham, S. R. & Green, M. A. 21.5% Efficient thin silicon solar cell. Prog. Photovolt. 4, 55–58 (1996).
Article Google Scholar
- 21.
Branham, M. S. et al. 15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures. Adv. Mater. 27, 2182–2188 (2015). This paper reports the first ultrathin silicon solar cell ( t = 10 μm) with a short-circuit current exceeding significantly single-pass absorption and leading to an efficiency η = 15.7%.
Article Google Scholar
- 22.
Gaucher, A. et al. Ultrathin epitaxial silicon solar cells with inverted nanopyramid arrays for efficient light trapping. Nano Lett. 16, 5358–5364 (2016).
Article Google Scholar
- 23.
Depauw, V. et al. Sunlight-thin nanophotonic monocrystalline silicon solar cells. Nano Futures 1, 021001 (2017).
Article Google Scholar
- 24.
Zhou, S. et al. Wafer-scale integration of inverted nanopyramid arrays for advanced light trapping in crystalline silicon thin film solar cells. Nanoscale Res. Lett. 11, 194 (2016).
Article Google Scholar
- 25.
Kuang, P. et al. Achieving an accurate surface profile of a photonic crystal for near-unity solar absorption in a super thin-film architecture. ACS Nano 10, 6116–6124 (2016).
Article Google Scholar
- 26.
Chong, T. K., Wilson, J., Mokkapati, S. & Catchpole, K. R. Optimal wavelength scale diffraction gratings for light trapping in solar cells. J. Opt. 14, 024012 (2012).
Article Google Scholar
- 27.
Wang, K. X., Yu, Z., Liu, V., Cui, Y. & Fan, S. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett. 12, 1616–1619 (2012).
Article Google Scholar
- 28.
Eyderman, S. et al. Light-trapping optimization in wet-etched silicon photonic crystal solar cells. J. Appl. Phys. 118, 023103 (2015).
Article Google Scholar
- 29.
Eyderman, S., John, S. & Deinega, A. Solar light trapping in slanted conical-pore photonic crystals: beyond statistical ray trapping. J. Appl. Phys. 113, 154315 (2013).
Article Google Scholar
- 30.
Martins, E. R. et al. Deterministic quasi-random nanostructures for photon control. Nat. Commun. 4, 2665 (2013).
Article Google Scholar
- 31.
Meng, X. et al. Combined front and back diffraction gratings for broadband light trapping in thin film solar cells. Opt. Express 20, A560–A571 (2012).
Article Google Scholar
- 32.
Shi, Y., Wang, X., Liu, W., Yang, T. & Yang, F. Light-absorption enhancement in thin-film silicon solar cells with front grating and rear-located nanoparticle grating. Phys. Status Solidi. 212, 312–316 (2014).
Article Google Scholar
- 33.
Haug, F.-J., Söderström, T., Cubero, O., Terrazzoni-Daudrix, V. & Ballif, C. Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers. J. Appl. Phys. 106, 044502 (2009).
Article Google Scholar
- 34.
Lee, H.-S. et al. Enhanced efficiency of crystalline Si solar cells based on kerfless-thin wafers with nanohole arrays. Sci. Rep. 8, 3504 (2018).
Article Google Scholar
- 35.
Ingenito, A., Isabella, O. & Zeman, M. Experimental demonstration of 4n2 classical absorption limit in nanotextured ultrathin solar cells with dielectric omnidirectional back reflector. ACS Photonics 1, 270–278 (2014).
Article Google Scholar
- 36.
Zeng, L. et al. Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector. Appl. Phys. Lett. 93, 221105 (2008).
Article Google Scholar
- 37.
Green, M. A. & Ho-Baillie, A. W. Y. Pushing to the limit: radiative efficiencies of recent mainstream and emerging solar cells. ACS Energy Lett. 4, 1639–1644 (2019).
Article Google Scholar
- 38.
Nakayama, K., Tanabe, K. & Atwater, H. A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl. Phys. Lett. 93, 121904 (2008).
Article Google Scholar
- 39.
Liu, W. et al. Surface plasmon enhanced GaAs thin film solar cells. Sol. Energy Mater. Sol. Cells 95, 693–698 (2011).
Article Google Scholar
- 40.
Yang, W. et al. Ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer. J. Appl. Phys. 115, 203105 (2014).
Article Google Scholar
- 41.
Vandamme, N. et al. Ultrathin GaAs solar cells with a silver back mirror. IEEE J. Photovolt. 5, 565–570 (2015).
Article Google Scholar
- 42.
van Eerden, M. et al. A facile light-trapping approach for ultrathin GaAs solar cells using wet chemical etching. Prog. Photovolt. 28, 200–209 (2020).
Article Google Scholar
- 43.
Grandidier, J., Callahan, D., Munday, J. & Atwater, H. A. Gallium arsenide solar cell absorption enhancement using whispering gallery modes of dielectric nanospheres. IEEE J. Photovolt. 2, 123–128 (2012).
Article Google Scholar
- 44.
Lee, S.-M. et al. High performance ultrathin GaAs solar cells enabled with heterogeneously integrated dielectric periodic nanostructures. ACS Nano 9, 10356–10365 (2015).
Article Google Scholar
- 45.
Chen, H.-L. et al. A 19.9%-efficient ultrathin GaAs solar cell with a silver nanostructured back mirror. Nat. Ener. 4, 761–767 (2019). This paper reports the fabrication of an ultrathin GaAs solar cell ( t = 205 nm) with a nanostructured back mirror and a conversion efficiency close to 20%.
Article Google Scholar
- 46.
Massiot, I. et al. Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers. ACS Photonics 1, 878–884 (2014).
Article Google Scholar
- 47.
Eyderman, S., Deinega, A. & John, S. Near perfect solar absorption in ultra-thin-film GaAs photonic crystals. J. Mater. Chem. A 2, 761–769 (2014).
Article Google Scholar
- 48.
Eyderman, S. & John, S. Light-trapping and recycling for extraordinary power conversion in ultra-thin gallium-arsenide solar cells. Sci. Rep. 6, 28303 (2016).
Article Google Scholar
- 49.
Aberg, I. et al. A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun. IEEE J. Photovolt. 6, 185–190 (2016).
Article Google Scholar
- 50.
Horowitz, K. A. W., Fu, R. & Woodhouse, M. An analysis of glass-glass CIGS manufacturing costs. Sol. Energy Mater. Sol. Cells 154, 1–10 (2016).
Article Google Scholar
- 51.
Shafarman, W. N. et al. Effect of reduced deposition temperature, time, and thickness on Cu(InGa)Se2 films and devices. In Proc. 26th IEEE Photovoltaic Specialists Conference 331–334 (IEEE, 1997).
- 52.
Lundberg, O., Bodegard, M., Malmström, J. & Stolt, L. Influence of the Cu(In, Ga)Se2 thickness and Ga grading on solar cell performance. Prog. Photovolt. 11, 77–88 (2003).
Article Google Scholar
- 53.
Jehl, Z. et al. Thinning of CIGS solar cells: Part II: cell characterizations. Thin Solid Films 519, 7212–7215 (2011).
Article Google Scholar
- 54.
Han, A. et al. Structure, morphology and properties of thinned Cu(In, Ga)Se2 films and solar cells. Semicond. Sci. Technol. 27, 035022 (2012).
Article Google Scholar
- 55.
Reinhard, P. et al. Flexible Cu(In, Ga)Se2 solar cells with reduced absorber thickness. Prog. Photovolt. 23, 281–289 (2013).
Article Google Scholar
- 56.
Pettersson, J., Törndahl, T., Platzer-Björkman, C., Hultqvist, A. & Edoff, M. The influence of absorber thickness on Cu(In, Ga)Se2 solar cells with different buffer layers. IEEE J. Photovolt. 3, 1376–1382 (2013).
Article Google Scholar
- 57.
Leonard, E. et al. Cu(In, Ga)Se2 absorber thinning and the homo-interface model: Influence of Mo back contact and 3-stage process on device characteristics. J. Appl. Phys. 116, 074512 (2014).
Article Google Scholar
- 58.
Jarzembowski, E. et al. Optical and electrical characterization of Cu(In, Ga)Se2 thin film solar cells with varied absorber layer thickness. Thin Solid Films 576, 75–80 (2015).
Article Google Scholar
- 59.
Yin, G., Brackmann, V., Hoffmann, V. & Schmid, M. Enhanced performance of ultra-thin Cu(In, Ga)Se2 solar cells deposited at low process temperature. Sol. Energy Mater. Sol. Cells 132, 142–147 (2015).
Article Google Scholar
- 60.
Vermang, B. et al. Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In, Ga)Se2 solar cells. Prog. Photovolt. 22, 1023–1029 (2014). This work demonstrates an ultrathin CIGS solar cell ( t = 385 nm) with a passivated back surface and nanosized point contacts ( η = 13.5%).
Article Google Scholar
- 61.
Vermang, B. et al. Introduction of Si PERC rear contacting design to boost efficiency of Cu(In, Ga)Se2 solar cells. IEEE J. Photovolt. 4, 1644–1649 (2014).
Article Google Scholar
- 62.
van Lare, C., Yin, G., Polman, A. & Schmid, M. Light coupling and trapping in ultrathin Cu(In, Ga)Se2 solar cells using dielectric scattering patterns. ACS Nano 9, 9603–9613 (2015).
Article Google Scholar
- 63.
Yin, G., Manley, P. & Schmid, M. Light absorption enhancement for ultra-thin Cu(In1-xGax)Se2 solar cells using closely packed 2-D SiO2 nanosphere arrays. Sol. Energy Mater. Sol. Cells 153, 124–130 (2016).
Article Google Scholar
- 64.
Jarzembowski, E., Fuhrmann, B., Leipner, H., Fränzel, W. & Scheer, R. Ultrathin Cu(In, Ga)Se2 solar cells with point-like back contact in experiment and simulation. Thin Solid Films 633, 61–65 (2016).
Article Google Scholar
- 65.
Malmström, J., Schleussner, S. & Stolt, L. Enhanced back reflectance and quantum efficiency in Cu(In, Ga)Se2 thin film solar cells with a ZrN back reflector. Appl. Phys. Lett. 85, 2634–2636 (2004).
Article Google Scholar
- 66.
Ohm, W. et al. Bifacial Cu(In, Ga)Se2 solar cells with submicron absorber thickness: back-contact passivation and light management. In Proc. 42nd IEEE Photovoltaic Specialists Conference. 1–5 (IEEE, 2015).
- 67.
Mollica, F. et al. Light absorption enhancement in ultra-thin Cu(In, Ga)Se2 solar cells by substituting the back-contact with a transparent conducting oxide based reflector. Thin Solid Films 633, 202–207 (2016).
Article Google Scholar
- 68.
Gouillart, L. et al. Development of reflective back contacts for high-efficiency ultrathin Cu(In, Ga)Se2 solar cells. Thin Solid Films 672, 1–6 (2019).
Article Google Scholar
- 69.
Jehl, Z. et al. Towards ultrathin copper indium gallium diselenide solar cells: proof of concept study by chemical etching and gold back contact engineering. Prog. Photovolt. 20, 582–587 (2012).
Article Google Scholar
- 70.
Larsen, J. K., Simchi, H., Xin, P., Kim, K. & Shafarman, W. N. Backwall superstrate configuration for ultrathin Cu(In, Ga)Se2 solar cells. Appl. Phys. Lett. 104, 033901 (2014).
Article Google Scholar
- 71.
Dahan, N. et al. Optical approaches to improve the photocurrent generation in Cu(In, Ga)Se2 solar cells with absorber thicknesses down to 0.5 µm. J. Appl. Phys. 112, 094902 (2012).
Article Google Scholar
- 72.
Onwudinanti, C. et al. Advanced light management based on periodic textures for Cu(In, Ga)Se2 thin-film solar cells. Opt. Express 24, A693–A707 (2016).
Article Google Scholar
- 73.
Goffard, J. et al. Light trapping in ultrathin CIGS solar cells with nanostructured back mirrors. IEEE J. Photovolt. 7, 1433–1441 (2017).
Article Google Scholar
- 74.
Bedell, S. W. et al. Kerf-less removal of Si, Ge, and III–V layers by controlled spalling to enable low-cost PV technologies. IEEE J. Photovolt. 2, 141–147 (2012).
Article Google Scholar
- 75.
Saha, S. et al. Single heterojunction solar cells on exfoliated flexible ~25µm thick mono-crystalline silicon substrates. Appl. Phys. Lett. 102, 163904 (2013). Ultrathin silicon solar cell ( t = 25 µm) fabricated by exfoliation, a kerf-less process.
Article Google Scholar
- 76.
Crouse, D. et al. Increased fracture depth range in controlled spalling of (100)-oriented germanium via electroplating. Thin Solid Films 649, 154–159 (2018).
Article Google Scholar
- 77.
Sweet, C. A. et al. Controlled exfoliation of (100) GaAs-based devices by spalling fracture. Appl. Phys. Lett. 108, 011906 (2016).
Article Google Scholar
- 78.
Bruel, M. Process for the production of thin semiconductor material films. US patent 5374564 (1994).
- 79.
Mizushima, I., Sato, T., Taniguchi, S. & Tsunashima, Y. Empty-space-in-silicon technique for fabricating a silicon-on-nothing structure. Appl. Phys. Lett. 77, 3290–3292 (2000).
Article Google Scholar
- 80.
Kapur, P. et al. A manufacturable, non-plated, non-Ag metallization based 20.44 % efficient, 243 cm2 area, back contacted solar cell on 40 µm thick mono-crystalline silicon. In Proc. 28th European Photovoltaic Solar Energy Conference and Exhibition 2228–2231 (2013).
- 81.
Wang, L. et al. Development of a 16.8% efficient 18-μm silicon solar cell on steel. IEEE J. Photovolt. 4, 1397 (2014).
Article Google Scholar
- 82.
Cariou, R. et al. Ultra-thin PECVD epitaxial Si solar cells on glass via low temperature transfer process. Prog. Photovolt. 24, 1075–1084 (2016).
Article Google Scholar
- 83.
Branz, H. M. et al. Hot-wire chemical vapor deposition of epitaxial film crystal silicon for photovoltaics. Thin Solid Films 519, 4545–4550 (2011).
Article Google Scholar
- 84.
Brendel, R. et al. Monocrystalline Si waffles for thin solar cells fabricated by the novel-perforated silicon process. Appl. Phys. A 67, 151 (1998).
Article Google Scholar
- 85.
Sakaguchi, K. et al. Current progress in epitaxial layer transfer. IEICE Trans. Electron. 378, E80-C (1997).
Google Scholar
- 86.
Tayanaka, H., Yamauchi, K. & Matsuhita, T. Thin-film crystalline silicon solar cells obtained by separation of a porous silicon sacrificial layer. In Proc. 2nd World Conference on Photovoltaic Energy Conversion 1272 (1998).
- 87.
Moslehi M. M. et al. World-record 20.6% efficiency 156 mm x 156 mm full-square solar cells using low-cost kerfless ultrathin epitaxial silicon & porous silicon lift-off technology for industry-leading high-performance smart PV modules. In Proc. The PV Asia Pacific Conference (2012).
- 88.
Stern, F. & Woodall, J. M. Photon recycling in semiconductor lasers. J. Appl. Phys. 45, 3904 (1974).
Article Google Scholar
- 89.
Konagai, M., Sugimoto, M. & Takahashi, K. High efficiency GaAs thin film solar cells by peeled film technology. J. Cryst. Growth 45, 277–280 (1978).
Article Google Scholar
- 90.
Park, S. et al. Germanium-on-nothing for epitaxial liftoff of GaAs solar cells. Joule 3, 1782–1793 (2019).
Article Google Scholar
- 91.
McClelland, R. W., Bolzer, C. O. & Fan, J. C. C. A technique for producing epitaxial films on reuseable substrates. Appl. Phys. Lett. 37, 560 (1980).
Article Google Scholar
- 92.
Bozler, C. O., McClelland, R. W. & Fan, J. C. C. Ultrathin, high-efficiency solar cells made from GaAs films prepared by the CLEFT Process. IEEE Electron Device Lett. 2, 203 (1981).
Article Google Scholar
- 93.
Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017). Epitaxial growth of III–V through graphene for easy layer transfer and substrate reuse.
Article Google Scholar
- 94.
Bae, S. H. et al. Graphene-assisted spontaneous relaxation towards dislocation-free heteroepitaxy. Nat. Nanotechnol. 15, 272–276 (2020).
Article Google Scholar
- 95.
Wolf, A. J. et al. Origination of nano- and microstructures on large areas by interference lithography. Microelectron. Eng. 98, 293–296 (2012).
Article Google Scholar
- 96.
Solak, H., Dais, C. & Clube, F. Displacement Talbot lithography: a new method for high-resolution patterning of large areas. Opt. Express 19, 10686 (2011).
Article Google Scholar
- 97.
Wang, L. et al. Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography. Microelectron. Eng. 161, 104–108 (2016).
Article Google Scholar
- 98.
Eisenlohr, J. et al. Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells. Sol. Energy Mater. Sol. Cells 142, 60–65 (2015).
Article Google Scholar
- 99.
Gao, P. et al. Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing. Nano Lett. 15, 4591–4598 (2015).
Article Google Scholar
- 100.
Massiot, I. et al. Highly conformal fabrication of nanopatterns on non-planar surfaces. Nanoscale 8, 11461 (2016).
Article Google Scholar
- 101.
Trompoukis, C. et al. Disordered nanostructures by hole-mask colloidal lithography for advanced light-trapping in silicon solar cells. Opt. Express 24, A191–201 (2016).
Article Google Scholar
- 102.
El Daif, O. et al. Front side plasmonic effect on thin silicon epitaxial solar cells. Sol. Energy Mater. Sol. Cells 104, 58–63 (2012).
Article Google Scholar
- 103.
Cariou, R. et al. III-V-on-silicon solar cells reaching 33 % photoconversion efficiency in two-terminal configuration. Nat. Ener. 3, 326–333 (2018).
Article Google Scholar
- 104.
Battaglia, C. et al. Nanoimprint lithography for high-efficiency thin-film silicon solar cells. Nano Lett. 11, 661–665 (2011).
Article Google Scholar
- 105.
Battaglia, C. et al. Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells. Nat. Photon. 5, 535–538 (2011).
Article Google Scholar
- 106.
Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 67, 3114 (1995).
Article Google Scholar
- 107.
Odom, T. W. et al. Improved pattern transfer in soft lithography using composite stamps. Langmuir 18, 5314 (2002).
Article Google Scholar
- 108.
Yin, G. et al. Optoelectronic enhancement of ultrathin CIGS solar cells by nanophotonic contacts. Adv. Opt. Mater. 5, 1600637 (2017).
Article Google Scholar
- 109.
Lan H. Large-Area Nanoimprint Lithography and Applications (Intechopen, 2017).
- 110.
Battaglia, C., Cuevas, A. & De Wolf, S. High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ. Sci. 9, 1552–1576 (2016).
Article Google Scholar
- 111.
Würfel, U., Cuevas, A. & Würfel, P. Charge carrier separation in solar cells. IEEE J. Photovolt. 5, 461–469 (2015). Different conductivities for e – /h + is the key ingredient for charge carrier separation in solar cells. Heterojunctions might also provide passivation.
Article Google Scholar
- 112.
Fu, Y. et al. ZnS nanodot film as defect passivation layer for Cu(In, Ga)(S, Se)2 thin-film solar cells deposited by spray-ILGAR (Ion-Layer Gas Reaction). Adv. Ener. Mater. 1, 561–564 (2011).
Article Google Scholar
- 113.
Reinhard, P. et al. Alkali-templated surface nanopatterning of chalcogenide thin films: a novel approach toward solar cells with enhanced efficiency. Nano Lett. 15, 3334–3340 (2015). Introduction of local heterojunctions in passivated front surfaces of CIGS solar cells. Surface nanopatterning based on self-assembled and well-defined alkali condensate nanostructures.
Article Google Scholar
- 114.
Rezaei, N., Isabella, O., Procel, P., Vroon, Z. & Zeman, M. Optical study of back-contacted CIGS solar cells. Opt. Express 27, A269–A279 (2019).
Article Google Scholar
- 115.
Fan, S. Thermal photonics and energy applications. Joule 1, 264–273 (2017).
Article Google Scholar
- 116.
Reese, M. O. et al. Increasing markets and decreasing package weight for high-specific-power photovoltaics. Nat. Ener. 3, 1002–1012 (2018).
Article Google Scholar
- 117.
Hirst, L. C. et al. Intrinsic radiation tolerance of ultra-thin GaAs solar cells. Appl. Phys. Lett. 109, 033908 (2016).
Article Google Scholar
- 118.
Green, M. A. & Bremner, S. P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 16, 23–34 (2017).
Article Google Scholar
- 119.
Okada, Y. et al. Intermediate band solar cells: recent progress and future directions. Appl. Phys. Rev. 2, 021302 (2015).
Article Google Scholar
- 120.
Mellor, A., Hylton, N., Maier, S. & Ekins-Daukes, N. Interstitial light-trapping design for multi-junction solar cells. Sol. Energy Mater. Sol. Cells 159, 212–218 (2017).
Article Google Scholar
- 121.
Do, K. S. et al. Experimental and simulation study for ultrathin (~100 μm) mono crystalline silicon solar cell with 156×156 mm2 area. Met. Mater. Int. 20, 545 (2014).
Article Google Scholar
- 122.
Taguchi, M. et al. 24.7 % record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 4, 96–99 (2014).
Article Google Scholar
- 123.
Radhakrishna, H. S. et al. Heterojunction IBC solar cells on thin (< 50μm) epitaxial Si foils produced from kerfless layer transfer process. In Proc. 33rd European Photovoltaic Solar Energy Conference and Exhibition 740–744 (2017).
- 124.
Danel, A. et al. Silicon heterojunction solar cells with open-circuit-voltage above 750mV. In Proc. 35th European Photovoltaic Solar Energy Conference and Exhibition 444–447 (2018).
- 125.
Reuter, M., Brendle, W., Tobail, O. & Werner, J. H. 50 µm thin solar cells with 17.0% efficiency. Sol. Energy Mater. Sol. Cells 93, 704–706 (2009).
Article Google Scholar
- 126.
Bergmann, R., Berge, C., Rinke, T., Schmidt, J. & Werner, J. Advances in monocrystalline Si thin film solar cells by layer transfer. Sol. Energy Mater. Sol. Cells 74, 213–218 (2002).
Article Google Scholar
- 127.
Tang, Q. et al. Superiority of random inverted nanopyramid as efficient light trapping structure in ultrathin flexible c-Si solar cell. Renew. Ener. 133, 883–892 (2019).
Article Google Scholar
- 128.
Balaji, P., Dauksher, W. J., Bowden, S. G., Augusto, A. Flexible silicon heterojunction solar cells on 40 µm thin substrates. In Proc. IEEE 46th Photovoltaic Specialists Conference (PVSC) 1089–1092 (IEEE, 2019).
- 129.
Glunz, S. New concepts for high-efficiency silicon solar cells. Sol. Energy Mater. Sol. Cells 90, 3276–3284 (2006).
Article Google Scholar
- 130.
Li, Y. et al. Quasi-Omnidirectional Ultrathin Silicon Solar Cells Realized by Industrially Compatible Processes. Adv. Electron. Mater. 5, 1800858 (2019).
Article Google Scholar
- 131.
Zheng, G. et al. 16.4% efficient, thin active layer silicon solar cell grown by liquid phase epitaxy. Sol. Energy Mater. Sol. Cells 40, 231–238 (1996).
Article Google Scholar
- 132.
Kuzma-Filipek, I. et al. 16% thin-film epitaxial silicon solar cells on 70-cm2 area with 30-µm active layer, porous silicon back reflector, and Cu-based top-contact metallization. P. rog. Photovolt. 20, 350–355 (2012).
Article Google Scholar
- 133.
Haase, F., Horbelt, R., Terheiden, B., Plagwitz, H. & Brendel, R. Back contact monocrystalline thin-film silicon solar cells from the porous silicon process. In Proc. The 34th IEEE Photovoltaic Specialists Conference 244–246 (2009).
- 134.
Blakers, A. W. 17% Efficient thin-film silicon solar cell by liquid-phase epitaxy. Prog. Photovolt. 3, 193–195 (1995).
Article Google Scholar
- 135.
Kim, H. J., Depauw, V., Duerinckx, F., Beaucarne, G. & Poortmans, J. Large-area thin-film free-standing monocrystalline Si solar cells by layer transfer. In Proc. The IEEE 4th World Conference on Photovoltaic Energy Conference 984–987 (IEEE, 2006).
- 136.
Hilali, M. M. et al. Light trapping in ultrathin 25 µm exfoliated Si solar cells. Appl. Opt. 53, 6140–6147 (2014).
Article Google Scholar
- 137.
He, J. et al. 15% Efficiency ultrathin silicon solar cells with fluorine-doped titanium oxide and chemically tailored poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) as asymmetric heterocontact. ACS Nano 13, 6356–6362 (2019).
Article Google Scholar
- 138.
Wolf, A., Terheiden, B. & Brendel, R. Autodiffusion: a novel method for emitter formation in crystalline silicon thin-film solar cells. Prog. Photovolt. 15, 199–210 (2007).
Article Google Scholar
- 139.
Duerinckx, F., Kuzma-Filipek, I., Nieuwenhuysen, K. V., Beaucarne, G. & Poortmans, J. Simulation and implementation of a porous silicon reflector for epitaxial silicon solar cells. Prog. Photovolt. 16, 399–407 (2008).
Article Google Scholar
- 140.
Nieuwenhuysen, K. V. et al. Epitaxially grown emitters for thin film silicon solar cells result in 16% efficiency. Thin Solid Films 518, S80–S82 (2010).
Article Google Scholar
- 141.
He, J. et al. Realization of 13.6% efficiency on 20 μm thick si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression. ACS Nano 9, 6522–6531 (2015).
Article Google Scholar
- 142.
Zheng, S., Wenham, R. & Green, M. A. 17.6% efficient multilayer thin-film silicon solar cells deposited on heavily doped silicon substrates. Prog. Photovolt. 4, 369–373 (1996).
Article Google Scholar
- 143.
Jeong, S., McGehee, M. D. & Cui, Y. All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency. Nat. Commun. 4, 2950 (2013).
Article Google Scholar
- 144.
Hadibrata, W., Es, F., Yerci, S. & Turan, R. Ultrathin Si solar cell with nanostructured light trapping by metal assisted etching. Sol. Energy Mater. Sol. Cells 180, 247–252 (2018).
Article Google Scholar
- 145.
Wang, S. et al. Large-area free-standing ultrathin single-crystal silicon as processable materials. Nano Lett. 13, 4393–4398 (2013).
Article Google Scholar
- 146.
Cariou, R., Ruggeri, R., Chatterjee, P., Gentner, J. L. & Roca I Cabarrocas, P. Silicon epitaxy below 200 °C: towards thin crystalline solar cells. In Proc. SPIE Optics and Photonics 84700B (SPIE, 2012).
- 147.
Xue, M. et al. Free-standing 2.7 μm thick ultrathin crystalline silicon solar cell with efficiency above 12.0%. Nano Ener. 70, 104466 (2020).
Article Google Scholar
- 148.
Cariou, R., Labrune, M. & Roca i Cabarrocas, P. Thin crystalline silicon solar cells based on epitaxial films grown at 165°C by RF-PECVD. Sol. Energy Mater. Sol. Cells 95, 2260–2263 (2011).
Article Google Scholar
- 149.
Teplin, C. W. et al. Comparison of thin epitaxial film silicon photovoltaics fabricated on monocrystalline and polycrystalline seed layers on glass. Prog. Photovolt. 23, 909–917 (2015).
Article Google Scholar
- 150.
Xue, M. et al. Contact selectivity engineering in a 2 μm thick ultrathin c-Si solar cell using transition-metal oxides achieving an efficiency of 10.8 %. ACS Appl. Mater. Interfaces 9, 41863–41870 (2017).
Article Google Scholar
- 151.
Trompoukis, C., El Daif, O., Depauw, V., Gordon, I. & Poortmans, J. Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography. Appl. Phys. Lett. 101, 103901 (2012).
Article Google Scholar
- 152.
Depauw, V., Qiu, Y., Van Nieuwenhuysen, K., Gordon, I. & Poortmans, J. Epitaxy-free monocrystalline silicon thin film: first steps beyond proof-of-concept solar cells. Prog. Photovolt. 19, 844 (2011).
Article Google Scholar
- 153.
Mavrokefalos, A., Han, S. E., Yerci, S., Branham, M. S. & Chen, G. Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications. Nano Lett. 12, 2792–2796 (2012).
Article Google Scholar
- 154.
Kuang, P. et al. Achieving an accurate surface profile of a photonic crystal for near-unity solar absorption in a super thin-film architecture. ACS Nano 10, 6116–6124 (2016).
Article Google Scholar
- 155.
Hsu, W.-C. et al. Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells. Opt. Commun. 377, 52–58 (2016).
Article Google Scholar
- 156.
Tan, X. et al. Enhancement of light trapping for ultrathin crystalline silicon solar cells. Opt. Commun. 426, 584–588 (2018).
Article Google Scholar
- 157.
Kim, I. et al. Silicon nanodisk array design for effective light trapping in ultrathin c-Si. Opt. Express 22, A1431–A1439 (2014).
Article Google Scholar
- 158.
Mallick, S. B., Agrawal, M. & Peumans, P. Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells. Opt. Express 18, 5691–5706 (2010).
Article Google Scholar
- 159.
Steiner, M. A. et al. Optical enhancement of the open-circuit voltage in high quality GaAs solar cells. J. Appl. Phys. 113, 123109 (2013).
Article Google Scholar
- 160.
Gai, B. et al. Multilayer-grown ultrathin nanostructured GaAs solar cells as a cost-competitive materials platform for III–V photovoltaics. ACS Nano 11, 992–999 (2017).
Article Google Scholar
- 161.
Yang, W. et al. Ultra-thin GaAs single-junction solar cells integrated with lattice-matched ZnSe as a reflective back scattering layer. In Proc. 38th IEEE Photovoltaic Specialists Conference 978–981 (IEEE, 2012).
- 162.
Vandamme, N. Nanostructured Ultrathin GaAs Solar Cells. PhD thesis, Université Paris Sud (2015); http://www.theses.fr/2015PA112111.
- 163.
Sai, H., Mizuno, H., Makita, K. & Matsubara, K. Light absorption enhancement in thin-film GaAs solar cells with flattened light scattering substrates. J. Appl. Phys. 122, 123103 (2017).
Article Google Scholar
- 164.
Buencuerpo, J., Steiner, M. A. & Tamboli, A. C. Optically-thick 300 nm GaAs solar cells using adjacent photonic crystals. Opt. Express 28, 13845 (2020).
Article Google Scholar
- 165.
Grenet, L. et al. Influence of coevaporation process on CIGS solar cells with reduced absorber thickness and current enhancement with periodically textured glass substrates. Thin Solid Films 621, 188–194 (2017).
Article Google Scholar
- 166.
Kim, K., Park, H., Kim, W. K., Hanket, G. M. & Shafarman, W. N. Effect of reduced Cu(InGa)(SeS)2 thickness using three-step H2Se/Ar/H2S reaction of Cu-In-Ga metal precursor. IEEE J. Photovolt. 3, 446–450 (2013).
Article Google Scholar
- 167.
Mansfield, L. M. et al. Efficiency increased to 15.2% for ultra-thin Cu(In, Ga)Se2 solar cells. Prog. Photovolt. 26, 949–954 (2018).
Article Google Scholar
- 168.
Salome, P. M. P. et al. Passivation of interfaces in thin film solar cells: understanding the effects of a nanostructured rear point contact layer. Adv. Mater. Interfaces 5, 1701101 (2018).
Article Google Scholar
- 169.
Shin, M. J. et al. Semi-transparent photovoltaics using ultra-thin Cu(In, Ga)Se2 absorber layers prepared by single-stage co-evaporation. Solar Ener. 181, 276–284 (2019).
Article Google Scholar
- 170.
Kim, K. & Shafarman, W. N. Alternative device structures for CIGS-based solar cells with semi-transparent absorbers. Nano Ener. 30, 488–493 (2016).
Article Google Scholar
- 171.
Dahan, N. et al. Using radiative transfer equation to model absorption by thin Cu(In, Ga)Se2 solar cells with Lambertian back reflector. Opt. Express 21, 2563–2580 (2013).
Article Google Scholar
- 172.
Yin, G., Manley, P. & Schmid, M. Light trapping in ultrathin CuIn1-xGaxSe2 solar cells by dielectric nanoparticles. Solar Ener. 163, 443–452 (2018).
Article Google Scholar
- 173.
Sasihithlu, K., Dahan, N. & Greffet, J. J. Light trapping in ultrathin CIGS solar cell with absorber thickness of 0.1 µm. IEEE J. Photovolt. 8, 621–625 (2018).
Article Google Scholar
- 174.
Allen, T. G. et al. A low resistance calcium/reduced titania passivated contact for high efficiency crystalline silicon solar cells. Adv. Ener. Mater. 7, 1602606 (2017).
Article Google Scholar
- 175.
Yin, X. et al. 19.2% Efficient InP heterojunction solar cell with electron-selective TiO2 contact. ACS Photo. 1, 1245 (2014).
Article Google Scholar
- 176.
Hsu, W. et al. Electron-selective TiO2 contact for Cu(In, Ga)Se2 solar cells. Sci. Rep. 5, 16028 (2015).
Article Google Scholar
- 177.
Yablonovitch, E., Gmitter, T., Swanson, R. M. & Kwark, Y. H. A 720 mV open circuit voltage SiOx:c‐Si:SiOx double heterostructure solar cell. Appl. Phys. Lett. 47, 1211–1213 (1985).
Article Google Scholar
- 178.
Feldmann, F. et al. Efficient carrier-selective p- and n-contacts for Si solar cells. Sol. Energy Mater. Sol. Cells 131, 100–104 (2014).
Article Google Scholar
- 179.
Richter, A. et al. n‐Type Si solar cells with passivating electron contact: identifying sources for efficiency limitations by wafer thickness and resistivity variation. Sol. Energy Mater. Sol. Cells 173, 96–105 (2017).
Article Google Scholar
- 180.
Battaglia, C. et al. Hole selective MoOx contact for silicon solar cells. Nano Lett. 14, 967–971 (2014).
Article Google Scholar
- 181.
Geissbühler, J. et al. 22.5 % efficient silicon heterojunction solar cell with molybdenum oxide hole collector. Appl. Phys. Lett. 107, 081601 (2015).
Article Google Scholar
- 182.
Bullock, J. et al. Efficient silicon solar cells with dopant-free asymmetric heterocontacts. Nat. Ener. 1, 15031 (2016).
Article Google Scholar
- 183.
Wei, S. & Zunger, A. Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys. J. Appl. Phys. 78, 3846–3856 (1995).
Article Google Scholar
- 184.
Feurer, T. et al. Progress in thin film CIGS photovoltaics – research and development, manufacturing, and applications. Prog. Photovolt. 7, 645–667 (2016).
Google Scholar
- 185.
Green, M. A. & Keevers, M. J. Optical properties of intrinsic silicon at 300K. Prog. Photovolt. 3, 189–192 (1995).
Article Google Scholar
- 186.
Yablonovitch, E. Statistical ray optics. J. Opt. Soc. Am. 71, 899–907 (1982).
Article Google Scholar
- 187.
Green, M. A. Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions. Prog. Photovolt. 10, 235–241 (2002).
Article Google Scholar
- 188.
Collin, S. & Giteau, M. New limits for light-trapping with multi-resonant absorption. In Proc. IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC-7) 3460–3462 (IEEE, 2018).
- 189.
Wang, K. X., Guo, Y. & Fan, S. Wave optics light-trapping theory: mathematical justification and ultimate limit on enhancement. J. Opt. Soc. Am. B 36, 2414–2422 (2019).
Article Google Scholar
- 190.
Lipovšek, B., Krč, J. & Topič, M. Optimization of microtextured light-management films for enhanced light trapping in organic solar cells under perpendicular and oblique illumination conditions. IEEE J. Photovolt. 4, 639–646 (2014).
Article Google Scholar
- 191.
Eisenhauer, D., Trinh, C. T., Amkreutz, D. & Becker, C. Light management in crystalline silicon thin-film solar cells with imprint-textured glass superstrate. Sol. Energy Mater. Sol. Cells 200, 109928 (2019).
Article Google Scholar
- 192.
Kosten, E. D., Kayes, B. M. & Atwater, H. A. Experimental demonstration of enhanced photon recycling in angle-restricted GaAs solar cells. Energy Environ. Sci. 7, 1907–1912 (2014).
Article Google Scholar
- 193.
Kosten, E. D., Newman, B. K., Lloyd, J. V., Polman, A. & Atwater, H. Limiting light escape angle in silicon photovoltaics: ideal and realistic cells. IEEE J. Photovolt. 5, 61–69 (2015).
Article Google Scholar
Download references
Acknowledgements
The work by A.C. and S.C. was supported in part by the French ANR projects ULTRACIS-M under grant ANR-12-PRGE-0003, NATHISOL under grant ANR-12-PRGE-0004, NANOCELL under grant ANR-RF-2015-01, ICEMAN under grant ANR-19-CE05-0019, by the 'Programme d'Investissement d'Avenir' ANR-IEED-002-01 and by the H2020 project ARCIGS-M funded by the European Commission under grant 720887.
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Data
Complete data set used in the benchmark of ultrathin solar cells (Figs. 1, 3 and 4) and refractive indices of GaAs and CIGS used in the Box and for the plot of reference models (Figs. 1, 3 and 4).
About this article
Cite this article
Massiot, I., Cattoni, A. & Collin, S. Progress and prospects for ultrathin solar cells. Nat Energy 5, 959–972 (2020). https://doi.org/10.1038/s41560-020-00714-4
Download citation
-
Received:
-
Accepted:
-
Published:
-
Issue Date:
-
DOI : https://doi.org/10.1038/s41560-020-00714-4
020 Design 11.8 2017 Full Options Crack
Source: https://www.nature.com/articles/s41560-020-00714-4?proof=t
0 Response to "020 Design 11.8 2017 Full Options Crack"
Post a Comment